VNR VIGNANA JYOTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY HYDERABAD B.TECH. MINOR IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

COURSE STRUCTURE AND SYLLABUS

(Applicable for the batches admitted from the academic year 2022-2023)

V SEMESTER						R22
Course Code	L	Т	P/D	СН	С	
22MC1AM301	Foundations of Artificial Intelligence	3	0	0	3	3
22MC2AM301	22MC2AM301 Artificial Intelligence Laboratory				3	1.5
Total			0	3	6	4.5

VI SEMESTER R22							
Course Code	Title of the Course	L	Т	P/D	СН	С	
22MC1AM302	Artificial Intelligence Applications	3	1	0	4	4	
	Total	3	1	0	4	4	

VII SEMESTER						R22
Course Code	Title of the Course	L	T	P/D	СН	C
22MC1AM401	Principles of Machine Learning	3	0	0	3	3
22MC1AM402	Fundamentals of Deep Learning					
22MC2AM401	Principles of Machine Learning Laboratory		•			, ,
22MC2AM402 Fundamentals of Deep Learning Laboratory		0	0	3	3	1.5
Total		3	0	3	6	4.5

VIII SEMESTER						R22
Course Code	Title of the Course	L	T	P/D	СН	С
22MC1AM403	Robotics Process Automation					
22MC1AM404	Natural Language Processing	ssing				
22MC1AM405	Game Theory	3	0	0	3	2
22MC1AM406	Computer Vision & Robotics		ı	U	3	3
22MC1AM407	Speech & Video Processing					
22MC1AM408	Soft Computing					
22MC4AM401 Mini – Project			0	4	4	2
	Total 3 0 4 7 5					

L - Lecture T - Tutorial P - Practical D - Drawing CH - Contact Hours/Week

C - Credits SE - Sessional Examination CA - Class Assessment ELA - Experiential Learning Assessment

SEE – Semester End Examination D-D – Day to Day Evaluation LR – Lab Record

CP – Course Project PE – Practical Examination

VNR VIGNANA JYOTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

B.Tech. Minor (AIML) V Semester

(22MC1AM301) FOUNDATIONS OF ARTIFICIAL INTELLIGENCE

TEACHING SCHEME				
L T/P C				
3	0	3		

EVALUATION SCHEME					
SE	CA	ELA	SEE	TOTAL	
30	5	5	60	100	

COURSE OBJECTIVES:

- To review important concepts required for artificial intelligence
- To introduce the concept of learning patterns from data and develop a strong model using machine learning algorithms
- To explain theoretical foundation for understanding state of the art machine learning algorithms like classifications, regressions
- To understand unsupervised learning technique using partitioning and hierarchical clustering methods
- To gain the knowledge on clustering techniques

COURSE OUTCOMES: After completion of the course, the student should be able to

CO-1: Represent knowledge and facts for solving the real-world problems

CO-2: Build, and evaluate the model using different machine learning techniques

CO-3: Design and implement machine learning solutions to classification, regression

CO-4: Design and implement various unsupervised learning methods to real-world applications

CO-5: Implement clustering techniques on real time data

UNIT - I:

Defining Artificial Intelligence, Defining AI techniques, Using Predicate Logic and Representing Knowledge as Rules, Representing simple facts in logic, Computable functions and predicates, Procedural vs Declarative knowledge, Logic Programming.

UNIT - II:

Mathematical Foundations: Matrix Theory and Statistics for Machine Learning. Idea of Machines learning from data, Classification of problem – Regression and Classification, Supervised and Unsupervised learning.

UNIT - III:

Linear Regression: Model representation for single variable, Single variable Cost Function, Gradient Decent for Linear Regression, Gradient Decent in practice

UNIT - IV:

Logistic Regression: Classification, Hypothesis Representation, Decision Boundary, Cost function, Advanced Optimization, Multi-classification (One vs All), Problem of Overfitting.

UNIT - V:

Clustering: clustering as a machine learning task, different types of clustering techniques, partitioning methods, k-medoids, hierarchical clustering. Use-cases centered around classification and clustering.

TEXT BOOKS:

- 1. Artificial Intelligence, Cengage Learning, Saroj Kaushik, 1st Edition, 2011
- 2. Python Machine Learning by Example, Yuxi (Hayden) Liu, Packet Publishing Limited, 2017

REFERENCES:

- 1. Machine Learning, Saikar Dutt, Subramanian Chandramouli, Amit Kumar Das, Pearson India
- 2. Practical Workbook Artificial Intelligence and Soft Computing for Beginners, Anindita Das Bhattacharjee, Shroff Publisher-X Team Publisher
- 3. Machine Learning, Tom Mitchell, McGraw-Hill, 2017
- 4. Pattern Recognition and Machine Learning, Christopher M. Bishop, Springer, 2011
- 5. The Elements of Statistical Learning, T. Hastie, R. Tibshirani, J. Friedman, 2nd Edition, 2011

VNR VIGNANA JYOTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

B.Tech. Minor (AIML) V Semester

(22MC2AM301) ARTIFICIAL INTELLIGENCE LABORATORY

TEACHING SCHEME					
L	T/P	С			
0	3	1.5			

	EVALUATION SCHEME						
D-D PE LR CP SEE TOTAL							
10	10	10	10	60	100		

COURSE OBJECTIVES:

- To review important concepts required for artificial intelligence
- To introduce the concept of learning patterns from data and develop a strong model using machine learning algorithms
- To explain theoretical foundation for understanding state of the art machine learning algorithms like classifications, regressions
- To understand unsupervised learning technique using partitioning and hierarchical clustering methods
- To explore various statistical methods for machine learning

COURSE OUTCOMES: After completion of the course, the student should be able to

- CO-1: Represent knowledge and facts for solving the real-world problems
- CO-2: Build, and evaluate the model using different machine learning techniques
- CO-3: Design and implement machine learning solutions to classification, regression
- **CO-4:** Design and implement various unsupervised learning methods to real-world applications
- CO-5: Apply statistical methods to develop the machine learning models

LIST OF EXPERIMENTS:

- **WEEK 1 & 2:** Basic programs in Python to get familiarize various programming structures
- **WEEK 3:** Implementation of logical rules in Python

WEEK - 4, 5, 6 & 7: Using any data apply the concept of:

- a. Liner regression
- b. Gradient decent
- c. Logistic regression
- **WEEK 8:** Perform and plot overfitting in a data set
- **WEEK 9 &10:** Implementation of KNN classification algorithm
- WEEK 11 &12: Implementation of k-means clustering algorithm
- **WEEK 13:** Explore statistical methods for machine learning

TEXT BOOKS:

- 1. Artificial Intelligence, Saroj Kaushik, 1st Edition, Cengage Learning, 2011
- 2. Python Machine Learning by Example, Yuxi (Hayden) Liu, Packet Publishing Limited, 2017
- 3. Machine Learning, Saikar Dutt, Subramanian Chandramouli, Amit Kumar Das, Pearson India

REFERENCES:

- 1. Practical Workbook Artificial Intelligence and Soft Computing for Beginners, Anindita Das Bhattacharjee, Shroff Publisher-X Team Publisher
- 2. Machine Learning, Tom Mitchell, McGraw-Hill, 2017
- 3. Pattern Recognition and Machine Learning, Christopher M. Bishop, Springer, 2011
- 4. The Elements of Statistical Learning, T. Hastie, R. Tibshirani, 2nd Edition, J. Friedman, 2011

VNR VIGNANA JYOTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

B.Tech. Minor (AIML) VI Semester

(22MC1AM302) ARTIFICIAL INTELLIGENCE APPLICATIONS

TEACHING SCHEME				
L T/P C				
3	1	4		

EVALUATION SCHEME						
SE	CA	ELA	SEE	TOTAL		
30	5	5	60	100		

COURSE OBJECTIVES:

- To give deep knowledge of Al
- To know the applications of AI in various fields to make the life easy
- To introduce recent topics in AIML
- To gain knowledge about robotic process automation, and AI optimized hardware
- To understand the recent developments in artificial intelligence

COURSE OUTCOMES: After completion of the course, the student should be able to

- **CO-1:** Correlate the AI and solutions to modern problems
- CO-2: Decide when to use which type of AI technique
- CO-3: Understand and analyse real world problems using AI techniques
- CO-4: Develop solutions using artificial intelligence and block chain technologies
- **CO-5:** Build smart solutions using AI techniques

UNIT - I:

Linguistic aspects of natural language processing, Al and Quantum Computing, Applications of Artificial Intelligence (AI) in business.

UNIT - II:

Emotion Recognition using human face and body language, Al based system to predict the diseases early,

UNIT - III:

Smart Investment analysis, AI in Sales and Customer Support, Robotic Processes Automation for supply chain management.

UNIT - IV:

Al-Optimized Hardware, Digital Twin i.e. Al Modelling, Information Technology & Security using Al.

UNIT - V:

Recent Topics in AI/ML: AI/ML in Smart solutions, AI/ML in Social Problems handling, Block chain and AI.

TEXT BOOKS:

 Al and Analytics, Accelerating Business Decisions, Sameer Dhanrajani, John Wiley & Sons 2. Artificial Intelligence in Practice: How 50 Successful Companies Used AI and Machine Learning to Solve Problems, Bernard Marr, Matt Ward, Wiley

REFERENCES:

- 1. Life 3.0: Being Human in the Age of Artificial Intelligence, Max Tegmark, 2018
- 2. Homo Deus: A Brief History of Tomorrow, Yuval Noah Harari, 2017