Name : Dr. R. Gokulan

Designation : Assistant Professor

Department : Civil Engineering

Mail I'd : gokulan_r@vnrvhiet.in

Experience (in years): 10; Teaching: 10; Research: Nil; Others (if any, specify): Nil

1. Educational / Technical qualifications:

S.No	Level (UG / PG / Ph.D)	Year of passing	Specialization
1	Ph.D.	2019	Environmental Engineering
2	M.Tech	2013	Environmental Engineering
3	B.Tech	2011	Bio-Technology
4	AMIE	2015	Civil Engineering

2. Teaching and Learning:

2.1. Teaching Interests:

- a) Water Supply Engineering
- b) Wastewater Engineering
- c) Solid Waste Management
- d) Air Pollution and Control
- e) Environmental Impact Assessment
- f) Waste to Energy
- g) Surveying

2.2. Novel Teaching & Learning Techniques adopted:

- a) Interaction teaching with students
- b) Use of NPTEL to understand the subject
- c) PowerPoint presentations
- d) WIT & WIL

2.3. Involvement in curriculum updating / Design: Nil

3. Co-curricular and Extra-Curricular Activities

3.1. Interests and Hobbies : Playing Cricked

3.2. CCA/ECA Organized : Nil
3.3. CCA/ECA participated : Nil
3.4. Counseling and Mentoring Activity : Nil

3.5. Committees involved in

a) Department level : Nilb) Institute Level : Nil

4. Conference / Workshop / Seminar / Guest Lectures:

4.1.1 **Conducted** : 12 4.1.2 **Attended** : 09

5. Academic Contribution and Research & Consultancy:

5.1. Invited Lectures : 02
5.2. Articles / Chapters published in Books : 61
5.3. Books published as single author or as editor : Nil

5.4. Projects Guided:

a) UG: 14 b) PG:Nil

5.5. Research Interests:

a) Biochar

b) Wastewater Treatment

c) Air Quality Index

5.6. Ph.D students:

a) Enrolled : Nilb) Submitted : Nilc) Awarded : Nil

5.7. Papers published in reviewed journals:

S.No	Title of the Paper	Journal Name Vol.No / PP	ISBN/ ISSN No.	Impact Factor/ Citation Index	National/ International
1	Prevention of groundwater contamination from the pollutants released from dyeing industries using biochar produced from palm shell	Urban Climate ,49 (2023) 101515	2212-0955	6.67	International
2	Production of Bio Briquettes from Gloriosa Superba Wastes-Turmeric Leaves (GSW-TL) with Cassava Starch Binder for Environment Sustainability	Waste and Biomass Valorization	1877-265X	3.44	International
3	Removal of azo dyes from synthetic wastewater using biochar derived from sewage sludge to prevent groundwater contamination	Urban Climate, 49 (2023) 101502	2212-0955	6.67	International
4	MTBE adsorption on surface modified adsorbent kaolin-KOH-A study on kinetic equilibrium and surface morphology	Global nest Journal, 25 (2023) 86–94	1790-7632 / 1108-4006	1.27	International
5	Enhancement of adsorption	Global nest	1790-7632 /	1.27	International

	efficiency by surface modified Avocado seed for xylene removal	Journal, 25 (2023) 130–138	1108-4006		
6	Biosorption of chromium (VI+) using tamarind fruit shells in continuously mixed batch reactor	Global nest Journal, 25 (2022) 180–185	1790-7632 / 1108-4006	1.27	International
7	Extraction of biodiesel from wastewater using microalage chlorella vulgaris	Global nest Journal, 25 (2022) 108–114	1790-7632 / 1108-4006	1.27	International
8	Removal of BTEX (Benzene, Toluene, Ethyl benzene and Xylene) from aqueous solutions using surface-modified zeolite	Global nest Journal, 25 (2022) 8-16	1790-7632 / 1108-4006	1.27	International
9	Synergistic removal of 1- (4-Hydroxy-3- Methoxyphenyl) ethenone (Apocynin) with enhanced immobilized and suspended Sr-doped LaNiO3 based photo- catalytic membrane reactor under gamma irradiation	Global nest Journal, 25 (2022) 50-56	1790-7632 / 1108-4006	1.27	International
10	Investigation of copper ion adsorption using activated sawdust powder: Isotherm, kinetic and thermodynamic studies	Global nest Journal, 25 (2023) 47–56	1790-7632 / 1108-4006	1.27	International
11	Ziziphus Jujube Seeds derived Biomass as Cost- Effective Biosorbent for the removal of Cr6+ from Aqueous solutions: Isotherm and Kinetic Studies	Global nest Journal, 25 (2022) 28-39	1790-7632 / 1108-4006	1.27	International
12	Studies on influence of process parameters in upgradation of bio-oil derived from HTL of domestic household waste: Application of response surface methodology	Global nest Journal, 25 (2023) 40–46	1790-7632 / 1108-4006	1.27	International
13	Biochar for removal of dyes in contaminated	Biochar 2022 41. 4 (2022) 1–16	2524-7972 / 2524-7867	11.45	International

	water: an overview				
14	Biochar from waste biomass as a biocatalyst for biodiesel production: an overview	Applied Nanoscience, 2021. (2021) 1–12	2190-5517	3.86	International
15	Batch, thermodynamic, and regeneration studies of Reactive Blue 19 using Ulva reticulata (biochar)	Desalination and Water Treatment, 267 (2022) 231- 239	1944-3994 / 1944-3986	1.32	International
16	Optimization of River Sand with Spent Garnet Sand in Concrete Using RSM and R Programming Packages	Journal of Nanomaterials, 2022 (2022)	1687-4129	3.5	International
17	Biosorption of Malachite Green from Aqueous Phase by Tamarind Fruit Shells Using FBR	Advances in Materials Sciences and Engineering, 2022 (2022).	1687-8442	2.08	International
18	Investigation of mechanism of metal ion adsorption from aqueous solutions using Prosopis julyflora roots: Batch and fixed bed column studies	Global nest Journal, 24 (2022) 297-310	1790-7632 / 1108-4006	1.27	International
19	Experimental Investigation on Reactive Orange 16 Removal Using Waste Biomass of Ulva prolifera	Advances in Materials Sciences and Engineering, 2022 (2022	1687-8442	2.08	International
20	Removal of Reactive Red 120 in a Batch Technique Using Seaweed-Based Biochar: A Response Surface Methodology Approach	Journal of Nanomaterials 2022 (2022) 1–12	1687-4129	2.08	International
21	Strength Prediction of Self-Consolidating Concrete Containing Steel Fibre with Different Fibre Aspect Ratio	Journal of Nanomaterials 2022 (2022)	1687-4129	2.08	International
22	Decolourization of Reactive Red 120 Using Agro Waste-Derived Biochar	Advances in Materials Sciences and Engineering, 2022 (2022)	1687-8442	2.06	International
23	Effective Removal of Reactive Yellow 145 (RY145) using Biochar	Advances in Materials Sciences and Engineering,	1687-8442	2.06	International

	Derived from Groundnut Shell	2022 (2022)			
24	Towards sustainable biodiesel production by solar intensification of waste cooking oil and engine parameter assessment studies	Science of the Total Environment, 804 (2022) 150236	0048-9697 / 1879-1026	10.75	International
25	Batch and packed bed column studies of azo dyes adsorption from the aqueous solutions using activated sugarcane bagasse charcoal adsorbent: isotherm and kinetic studies	Global Nest Journal, 25 (2022) 151–168	1790-7632 / 1108-4006	1.17	International
26	Biosorption of heavy metal ions from the aqueous solutions using groundnut shell activated carbon: batch adsorption, kinetic and thermodynamic studies	Global Nest Journal, 24 (2022) 729-742	1790-7632 / 1108-4006	1.17	International
27	Soft computing-based models and decolorization of Reactive Yellow 81 using Ulva Prolifera biochar	Chemosphere. 287 (2022) 132368	0045-6535 / 1879-1298	8.99	International
28	Continuous Sorption of Remazol Brilliant Orange 3R Using Caulerpa scalpelliformis Biochar	Advances in Materials Sciences and Engineering, 2021 (2021).	1687-8442	2.06	International
29	Techno-economic feasibility of biochar as biosorbent for basic dye sequestration	Journal of Indian Chemical Society, 98 (2021) 100107	0019-4522	0.2	International
30	Artificial neural network modelling for biodecolorization of Basic Violet 03 from aqueous solution by biochar derived from agro-bio waste of groundnut hull: Kinetics and thermodynamics	Chemosphere. 276 (2021) 130191	0045-6535 / 1879-1298	8.99	International
31	Optimization of Remazol Black B Removal Using Biochar Produced from	Advances in Materials Sciences and Engineering,	1687-8442	2.08	International

	Caulerpa scalpelliformis Using Response Surface Methodology	2021 (2021)			
32	Effective removal of remazol brillinat orange 3R using a biochar derived from Ulva reticulata	Energy Sources, Part A Recover. Util. Environ. Eff. 00 (2021) 1–14	1556-7036 / 1556-7230	3.47	International
33	Optimization of process conditions using RSM and ANFIS for the removal of Remazol Brilliant Orange 3R in a packed bed column	Journal of Indian Chemical Society, 98 (2021) 100086	0019-4522	0.2	International
34	Treatment of RO Rejects Wastewater by Integrated Coagulation Cum Adsorption Process	Polish Journal of Environmental Studies, 30 (2021) 4031–4038	1230-1485	1.32	International
35	Biodecolorization of Reactive Red 120 in batch and packed bed column using biochar derived from <i>Ulva reticulata</i>	Biomass Conversion and Bio refinery, (2021) 1–15	2190-6815 / 2190-6823	4.99	International
36	Continuous sorption of methylene blue dye from aqueous solution using effective microorganisms- based water hyacinth waste compost in a packed column	Biomass Conversion and Bio refinery, 13 (2023) 1189– 1198	2190-6815 / 2190-6823	4.99	International
37	Production of Ulva prolifera derived biochar and evaluation of adsorptive removal of Reactive Red 120: batch, isotherm, kinetic, thermodynamic and regeneration studies	Biomass Conversion and Bio refinery, 13 (2021) 5379– 5390	2190-6815 / 2190-6823	4.99	International
38	Biosorption of zinc metal ion in aqueous solution using biowaste of Pithophora cleveana Wittrock and Mimusops elengi	Desalination and Water Treatment, 218 (2021) 363– 371	1944-3994 / 1944-3986	1.32	International
39	Comparative adsorptive removal of Reactive Red 120 using RSM and ANFIS models in batch	Biomass Conversion and Bio refinery, 2021. (2021) 1–17	2190-6815 / 2190-6823	4.99	International

	and packed bed column				
40	Evaluation of the adsorptive removal of cationic dyes by greening biochar derived from agricultural bio-waste of rice husk	Biomass Conversion and Bio refinery, 13 (2021) 4047– 4060	2190-6815 / 2190-6823	4.99	International
41	Box — Behnken experimental design for the optimization of Basic Violet 03 dye removal by groundnut shell derived biocha	Desalination and Water Treatment, 209 (2021) 379– 391	1944-3994 / 1944-3986	1.32	International
42	Prediction of RSM and ANN in the decolorization of Reactive Orange 16 using biochar derived from <i>Ulva lactuca</i>	Desalination and Water Treatment, 211 (2021) 304– 318	1944-3994 / 1944-3986	1.32	International
43	Removal of lead metal ion using biowaste of Pithophora cleveana wittrock and Mimusops elengi	Energy Sources, Part A Recover. Util. Environ. Eff. (2020) 1–19	1556-7036 / 1556-7230	3.32	International
44	Biodecolorization of Remazol dyes using biochar derived from Ulva reticulata: isotherm , kinetics , desorption , and thermodynamic studies	Desalination and Water Treatment, 200 (2020) 286– 295	1944-3994 / 1944-3986	1.32	International
45	Evaluation of the adsorption capacity of Cocos Nucifera shell derived biochar for basic dyes sequestration from aqueous solution	Energy Sources, Part A Recover. Util. Environ. Eff. (2020) https://doi.org /10.1080/15567036 2020.1800142	1556-7036 / 1556-7230	1.27	International
46	Biodecolorization of Basic Violet 03 Using Biochar Derived from Agricultural Wastes: Isotherm and Kinetics	Journal of Biobased Materials and Bioenergy, 14 (3), 2020, 316-326	1556-6560 / 1556-6579	0.2	International
47	Experimental and chemometric analysis of bioremediation of remazol dyes using biochar derived	Desalination and Water Treatment, 184 (2020) 340– 353	1944-3994 / 1944-3986	1.32	International

	from green seaweeds				
48	Sorption kinetics and isotherm studies of cationic dyes using groundnut (arachis hypogaea) shell derived biochar a low-cost adsorbent	Applied Ecology And Environmental Research 18(1):1925-1939.	1589-1623 / 1785-0037	1.27	International
49	Remediation of complex remazol effluent using biochar derived from green seaweed biomass	International Journal of Phytoremediation. 21 (2019)	1522-6514 / 1549-7879	4.03	International
50	Remediation of remazol dyes by biochar derived from Caulerpa scalpelliformis — An ecofriendly approach	Journal of Environmental. Chemical. Engineering, 7 (2019) 103297	2213-2929 / 2213-3437	7.96	International
51	Biodecolorization of Basic Blue 41 using EM based Composts: Isotherm and Kinetics	ChemistrySelect. 4 (2019	2365-6549	2.97	International
52	A Critical Insight into Biomass Derived Biosorbent for Bioremediation of Dyes	ChemistrySelect. 4 (2019) 9762– 9775	2365-6549	2.97	International
53	Comparative Desorption Studies on Remediation of Remazol Dyes Using Biochar (Sorbent) Derived from Green Marine Seaweeds	ChemistrySelect. 4 (2019).	2365-6549	2.97	International
54	A novel sorbent <i>Ulva lactuca</i> -derived biochar for remediation of Remazol Brilliant Orange 3R in packed column	Water Environment Research, 91 (2019) 642–649	1061-4303 / 1554-7531	3.33	International
55	Remazol Effluent Treatment in Batch and Packed Bed Column Using Biochar Derived from Marine Seaweeds,	Nature, Environment and Pollution Technology, 19, 5 1931-1936	2395-3454	NA	National
56	Best dilution ratio and GCMS analysis for the removal of nutrient from municipal wastewater by microalgae,	International Journal of ChemTech Research, 06 (01) 663-672	0974-4290	NA	National

	Comparative study on	International			
	treatment of municipal	Journal of			
57	wastewater with carbon	ChemTech	0974-4290	NA	National
	dioxide sequestration by	Research, 06 (01)			
	microalgae,	609-618			
	Assessment of	International			
	physicochemical	Journal of			
58	characteristics of	ChemTech	0974-4290	NA	National
	municipal wastewater by	Research, 06 (01),			
	microalgae	515-520.			
	Optimization of Conditions	Nature			
	for Bio hydrogen	Environment and			
59	Production from Industrial	Pollution	2395-3454	NA	National
	Waste by Anaerobic Co-	Technology, 13			
	digestion.	(04) 791-794.			
	Treatment of Grey Water	International			
	Using Hydrocarbon	Journal of			
60	Producing Botryococcus	ChemTech	0974-4290	NA	National
	braunii,	Research. 05 (03),			
		1390-1392			
	Optimization of bio-	Ecology,			
61	hydrogen production from	Environment and	0071 765V	NIA	National
61	bio-wastes,	Conservation, 24	0971-765X	NA	National
		(1), 284-287			

5.8. Papers presented at National / International Journals:

S.No	Title of the Paper	Names of the Conference/ Seminars	National/ International	Period
1	Batch adsorption removal of remazol black b (rbb) dye using agricultural waste (rice husk) derived biochar	Innovations in Concrete and	International	25 and 26 th June 2021
2	Biosorption of Chromium (VI) From Water Environment by Continuously Mixed Batch Reactor Using TFS	Virtual International Conference on Sustainable Practices and Innovations in Civil Engineering 2022, Department of Civil Engineering, SSN College of Engineering Kalavakkam, Tamil Nadu, India.	International	16th and 17th March 2022
3	Biohydrogen production from industrial waste through anaerobic co-digestion	Sustainable Practices in Civil Engineering (SPICE 2017), KPR Institute of Engineering and Technology, Coimbatore, Tamil	International	10 and 11 th April 2017

		Nadu.		
4	Effect of distillery effluent on the physico-chemical and geotechnical behaviour of commercial and natural soil	National conference on Advance Techniques in civil engineering (NCATCE 15), Karpagam University, Coimbatore	National	2015
5	Algae for carbon Capture	International conference center, Dalina, China	International	2014
6	Algae for bioenergy production	International Conference on energy challenges and mechanics, 2014, University of Aberdeen, Scotland, United Kingdom	International	2014
7	Geotechnical characteristics of the fine grained soils due to artificial contamination of surfactant effluent	National conference on recent trend in engineering and technology, (NCONET14), Jonson's institute of engineering and technology, Coimbatore	National	2014
8	Carbondioxide sequestration and municipal waste water treatment by microalgae	conference on latest emerging trends and sustainable development in civil engineering (LETS DO CIVIL 14), Bannari Amman institute of engineering and technology, Erode	National	2014
9	Carbon Capture & CO ₂ Sequestration in Coal based Thermal Power plants by Algae – A Review	Bio energy, Environment& Sustainable technologies (BEST 2013), , Arunai Engineering College, Thiruvannamalai, Tamil Nadu.	International	27-30 March 2013
10	Treatment of grey water using hydrocarbon producing bottryococcus baunii"	National Conference on Industrial Pollution and Control Technology (IPACT 2013), Annamalai University, Chidambaram, Tamil Nadu.	National	14 and 15 March 2013
11	Renewable energy from waste materials"	on National conference on 3R Technology (NC3RT13), Karunya University, Coimbatore	National	2013
12	Utilization of Industrial Flue Gas for Bioenergy Production	International Conference on Anthropogenic Impact on Environment and Bioremediation (ICAIEB- 2012), SV University, Tirupathi, Andhra Pradesh	International	2012

5.9. Sponsored research Projects:

S.No	Title	Agency	Period	Grant amount	Ongoing / Completed		
	Nil						

5.10 Consultancy Projects:

S.No	Title	Agency	Period	Sanctioned Amount	Ongoing / Completed
Nil					

6. Awards / Honors received: Nil

7. Motto: I may fail, my hard work never fails